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ME525 Applied Acoustics Lecture 15, Winter 2024
Spectral Analysis Part I

Peter H. Dahl, University of Washington

We switch gears aover the next couple of lectures towards getting a practical, working knowl-
edge of FFT-based analyis of acoustic data. Figure 1 shows a recording of 10 sec of underwater
pressure data recorded at a depth of about 500 m in the Western Pacific. The sample rate (or sam-
ple frequency) is fs 1600 Hz, meaning each sample is separated by dt = 1/fs sec.

The Nyquist sampling theorem tells us that if you discretely sample a time series of anything
(e.g., earthquake seismic recording, music, a heart EKG signal, the stock market) with time separa-
tion equal to dt = 1/fs, then the maximum observable frequency in any subsequent analysis, e.g..,
spectrum analysis, fs/2. As a consequence, if your time series possesses energy, or content, at fre-
quencies greater than fs/2, the resulting discrete time series associated with your digital recording
based dt = 1/fs, is aliased. At this point there is not much you can do with the corrupted data and
thus we take great pains to avoid aliasing. One way is to increase fs (decrease dt) but this can result
in a large data storage. Another way is to pre-filter the data with an anti-aliasing filter to remove
all frequency content greater than fs/2 before undertaking the digital sampling. From the Nyquist
theorem, you should thus understand that we can studyt frequency content in the Fig. 1 data up to
≤ 0.5fs or 800 Hz.

Figure 1: Underwater sound recording made at depth in the Western Pacific at a depth of 500 m.

In matlab the the data in Fig. 1 is named data_Pa, which is of length N = 16000 points,

Copyright © 2024 P. H. Dahl. All Rights Reserved.



2

and a full-length FFT of this data is X=fft(data_Pa), with result shown in Fig. 2. Notice the
symmetry about the half-way point. If you needed to work with negative frequencies (see sup-
plementary notes), then plot fftshift(fft(data_Pa)), but this is not our current interest. In-
stead we retain only the first half of the FFT vector X = X(1:N/2) (for simplicity best to have
N even, but not essential). Make a corresponding 800-point frequency vector in matlab as fol-
lows: f = (0:1:(0.5N-1)), and then insure the highest frequency equals fs/2, or 800 Hz, with
f = (f/f(end))*fs/2.

Figure 2: Plot of the absolute value of the 16000 complex FFT coefficients X corresponding to the data in
shown in Fig. 1.

Notation can be variable, but here define the discrete representation X as a function of f , as
computed above, where X and f are each length 800; and X(f) is complex-valued. Now define

S(f) =
2dt

N
|X(f)|2 (1)

Equation (1) gives the proper normalization for integrating S(f) over the frequency range 0 to fmax

= 800 Hz, to yield the variance, σ2 or mean-square value, of the original data in the time domain.
The proper dimension of S(f) (Fig. 3) is Pa2/Hz, and thus S(f) might also be referred to as a
variance spectrum. Note that one can force the normalization as follows

S(f) = σ2|X(f)|2/
∫ fmax

0

|X(f)|2df (2)

Although both Eqs. (1) and (2) yield the same result, it is good to keep Eq.(1) for a better under-
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standing on the role of dt and N .
Two versions of S(f) are displayed in Fig. 3, one labeled ν = 2 is that which we have been

discussing, based on a FFT over the entire length of the data, or K = 1. The one labeled ν = 20, is
computed by segmenting the data in Fig. 1 into K =10 non-overlapping segments, each of duration
1 sec. We compute the FFT for each segment, and form the Sk(f) for each of the kth segments
following Eq.(1) but with now N = 1600. The plot in Fig. 3 shows the average 1

K

∑
Sk. The value

ν = 2K is the number of degrees of freedom involved the spectral estimate (Percival and Walden).
Note: this relation for ν applies only to the case where there is no over-lap in the segments, and
where there is no ”windowing” of the data–it is the most simplified case, but reliable, and good
place to start. Regardless, this basic rule applies: Increasing ν yields a smoother estimate of S(f)
with lower variance, but at the cost of lower frequency resolution. This is an important trade off
you often have to consider. For our simple case, the spectral variance is

VarS(f) ≈ 2S2(f)

ν
(3)

meaning the standard deviation of the spectrum at any discrete frequency f is approximately S(f)√
K

.
This effect can best be seen in Fig. 3, over the high end of the frequency range between about 600
and 800 Hz, where values of S(f) are fluctuating but are also somewhat stationary. The standard
deviation of such values based on the ν = 2 case is a factor of

√
10 greater than corresponding

standard deviation of values based on the ν = 20 spectral representation, which we anticipate from
Eq.(3).

An example of segmenting, or subsampling the data, into non-overlapping segments, and over-
lapping segments, each of duration 1 sec is shown in Fig. 4. For upper plot, two of the 1-sec seg-
ments are shown that form the K = 10 averaging segments. Another strategy is to overlap the
segments, typically by 50%, as shown on the right. For the upper case example, the spectral win-
dow is a rectangular or uniform window. Alternatively, Fig. 4 (lower) shows the effect of breaking
up the time series into 10 non-overlapping segments, and applying a Hanning spectral window to
each segment which forces each data segement to start and finish at 0, and thus improves frequency
resolution over that of the rectangular windw. References such as Percival and Walden, including
many others, can be consulted on to learn more on how differing windowing and overlap strategies
influence frequency resolution and variance. In the next lecture we show that one best practice is to
use both a Hanning spectral window in combination with 50% overlap.

References
D. P. Percival and A. T. Walden, Spectral Analysis for Physical Applications, (Cambridge University
Press, New York, 1993)
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Figure 3: Proper normalized variance spectrum S(f) corresponding to the data in shown in Fig. 1, based on
two values of ν

Figure 4: Upper: 16000 point time series of underwater sound corresponding to 10 sec, given sample fre-
quency of 1600 Hz. On the left are 1-sec, non-overlapped samples, on right illustrates 50% overlapped
samples. Lower: same data windowed by non-overlapping Hanning window functions.
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ME525 Applied Acoustics Lecture 16, Winter 2024
Better Practices in Spectral Analysis

Peter H. Dahl, University of Washington

Tapering and Welch’s overlapped segments: best practice

Previously we discussed the estimation of S(f), the segmenting of data into K non-overlapping
segments, or blocks, and the relation between K and degrees of freedom (DOF) ν, and that increas-
ing ν produces a decrease in the variance of the spectral estimate. All this is true, and remains a
good starting point which you can carrry out with just the FFT algorithm.

However at least one ”best practice” approach is known as Welch’s overlapped averaging (Per-
cival and Walden). Figure 1 upper shows the first 48000 points of a time series (black) with two
non-overlapping segments each of 24000 points. Each segment is subjected to windowing function
or taper. The taper is made by multiplying the data by a 24000-point hanning taper, and provides
some improvement in the spectral estimation (e.g., reducing what is known as spectral leakage).
FFT analysis is next be taken on each segment, with the all segments averaged.

A quick note about tapering, which I’ve referred to in previous lectures as windowing, with
both terms commonly used. When one takes an FFT sample of data, it is necessarily of finite length,
say time length T . Without doing anything, this means the data have been windowed, or tapered
by a boxcar function of length T , meaning the data has been multiplied by a function that equals 1
for from t = 0 to t = T and 0 thereafter.

Multiplication in the time domain translates to convolution in the frequency domain. Thus, the
true spectrum of the data, say X(f) has been convolved with the spectrum of boxcar function of
length T , this boxcar spectrum is sin 2πfT

πT
. However, there are more optimal tapering functions than

the simple boxcar, one of which (and probably the most common) is the Hanning taper function.
The effect of window data is seen in Fig. 2, which compares the spectrum of the equal-length Han-
ning and Boxcar functions. The upshot of this figure is that center width of the Hanning window is
slightly wider and therefore gives up frequency resolution, but side lobes are reduced. In contrast
the Boxcar window has slightly better frequency resolution, but with higher side lobe structure
which causes spectral leakage.

There are some applications, e.g., measurement of a smaller Doppler shift in frequency, where
the best frequency resolution is needed, and other applications, such as the measurement of ran-
dom noise where resolution is not so essential. On balance, results from majority of applications
are improved upon using the Hanning, or another optimized window, compared with the simple
boxcar.

Another strategy to improve results is to overlap continuous blocks of data to reduce the vari-
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Figure 1: Upper: 48000 points of a time series (black) with two non-overlapping segments each of 24000
points, each subjected to Hanning taper function. Lower: same data 50% overlapping of the first two seg-
ments of 24000 points.

ance of the spectral estimate. The lower graph Fig. 1 shows the case where there is a 50% overlap
for each block. Thus for the same sample size you can imagine there is about twice as many blocks
when there is 50% overlap. Furthermore, because of block overlap some of the data lost in one
block owing to the taper is regained in the adjacent block. This combination of 50% block over-
lap, plus a Hanning taper, is a common recommendation for spectral analysis in the engineering
literature, and you should keep that in mind.

Continuing now with the case of 50% overlap. Let n be the total number of points in the time
series, and ns be the non-overlapping length (as in 24000 points in Fig. 1 upper). Then the total
number of blocks is nb =

2
ns
(n− ns) + 1. Taking a case from the start of Lecture 15, with n = 16000,

and ns = 1600, giving K = 10, then at 50% overlap nb = 19, or about twice K as anticipated. A
revised estimate for the ν is (Percival and Walden)

ν ≈ 36n2
b

(19nb − 1)
(1)

Eq.(1) gives ν = 36, a good increase from ν = 20 were we to use the non-overlapping segments,
and the result will be a reduction in the variance of the estimate.
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Figure 2: Magnitude spectrum of equal length Hanning and Rectangular (Boxcar) taper functions. Frequency
is non-dimensional frequency. Center width of the Hanning is slightly wider, giving up frequency resolution
but side lobes are reduced. Boxcar has slightly better frequency resolution, but with higher side lobe structure
or spectral leakage.

Figure 3: The M/V Oregon Highway the spectrum from which was measured by a bottom hydrophone
located about 100 km south of Cape Cod in March 2017. The vessel is moving about 14 knots, and these data
are from the closest point of approach (CPA) from the sensor, which is about 500 m.

As specific example of these ideas we examine the variance spectrum of measurements from
merchant vessel M/V Oregon Highway (Fig. 3). The variance spectrum is shown in Fig. 4 using
50 non-overlapping, non-tapered segments, (ν = 100) and then with the Welch overlap method
with 50% overlap and Hanning taper (ν = 190). The result is real improvement in terms of lower
variance. The Welch method is achieved with a couple of lines in matlab (provided you have signal
processing toolbox)

[S,F] = pwelch(data_Pa,hanning(24000),12000,24000,5000);

This one line takes the data divided in segments of 24000 points, overlap 12000 points (50%), 24000
point hanning window, and sample frequency 5000 Hz. Using the pwelch code is quite handy
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because the results are automatically normalized to the variance of the original time series.

Figure 4: Spectral estimates of underwater noise measurements from the M/V Oregon Highway data based
on 50 non-overlapping, non-tapered segments (ν = 100)., and based on the Welch overlap method with 50%
overlap and Hanning taper (ν = 190).

Confidence intervals of the spectrum and plotting in dB

Confidence interval (CI) are commonly use to bracket a spectral estimation. For this case it is
more convenient to plot S(f) and the CI on a decibel scale. This can be subtle–and for sure there are
many programs that do this automatically–however you need to understand what you are doing
to avoid garbage.

I will distill results directly from Percival and Walden pp 256-257, and their table 256, for which
we limit discussion to the so-called 90% and 95% CI, which are the most common. Also the results
given here are limited to large ν of order 10 or more, which is also most common. The convention
for CI is such that CI = 100(1 − 2p)%, for example, a p = 0.05 implies a CI of 90%. We require
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evaluation of Qν(p) and Qν(1− p) where

Qν(p) ≈ ν(1− 2

9ν
+ ϕ−1(p)(

2

9ν
)1/2)3 (2)

From Table 256, for CI 90% find ϕ−1(p) = −1.6449 and ϕ−1(1− p) = 1.6449, for CI 95% find ϕ−1(p) =

−1.96 and ϕ−1(1 − p) = 1.96. Equation (2) perhaps looks a bit strange, but numbers like 1.6449
and 1.96, ought to be somewhat familiar from the study of the standardized normal probability
density function. For example the probability of standardized normal random variable z such that
|z| > 1.96 equals 0.05.

To formally plot S(f) in dB along with CI compute:
10 log10

ν
Qν(1−p)

+ 10 log10 S(f)

for the lower bound, and
10 log10

ν
Qν(p)

+ 10 log10 S(f)

for the upper bound.
The result (Fig. 5) shows quite small dB-bounds (red curves) that bracket the mean estimate

10 log10 S(f) (black curve). Note: Fig. 5 is plotted as 10 log10 S(f) + 120 dB, to have the decibel
values correspond to the more common underwater standard reference pressure of 1µ Pa. The
expanded scale on the right-hand plot illustrates the ± dB bounds, for two peaks near 12 and 13. 5
Hz.

Repeating this but now by taking segments of length 10 times longer (Fig. 6), observe how the
variance increases but the frequency resolution improves (best seen on the right expanded scale).
This fundamental trade off between variance and resolution is very important to understand.
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Figure 5: Spectral estimates of underwater noise measurements from M/V Oregon Highway based on Welch
overlap method with 50% overlap of segments of length 24000 points, Hanning taper, giving ν = 190, along
with 90% confidence intervals. Data are plotted in dB re µ Pa2/Hz. Left plot: full frequency range in log
scale, right plot: expanded frequency range in linear scale

Figure 6: Spectral estimates of underwater noise measurements from M/V Oregon Highway based on Welch
overlap method with 50% overlap of segments of length 240000 points, Hanning taper, giving ν = 19, along
with 90% confidence intervals. Data are plotted in dB re µ Pa2/Hz. Left plot: full frequency range in log
scale, right plot: expanded frequency range in linear scale

The short-time Fourier transform, used in Time-Frequency analysis

Figure 7 shows 50 sec of acoustic data from the noise emission of a jet as it was flying over
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water. The recording was made with buoy equipped with a microphone at height 3 m above the
air-water interface. The sampling frequency is 32000 Hz, so the total number of samples N in the
entire data stream is 1600000. The physics involved is like the reverse of the Lloyd mirror problem
studied earlier using a real a source below the air-water interface, combined with a negative image
source above the air-water interface to match the boundary condition that pressure equals zero on
the boundary. Here air-to-water boundary, i.e., sound originating from above, behaves more like
rigid boundary, or known as a Neumann boundary condition. For modeling, a real a source is
located above the air-water interface, and a positive image source below air-water interface. The
combination of the real and positive image source will satisfy this approximately rigid boundary
condition.

Figure 7: Jet noise recorded over water by a microphone 3 m above the air-water interface.

Figure 8 (left) shows variance spectrum S(f), obtained with K = 1 (all data), K = 10 (5-sec
non-overlap rectangular window), and K = 50 (1-sec non-overlap rectangular window), all which
yield the variance of the data time series data via integration as required, and by now you should
recognize the role of K or DOF ν, in determining the variance. Note: looking at the data in this
manner, using K = 1,10 or 50, can be somewhat problematic, as the data are not stationary insofar
as the variance of the time series is changing over time, e.g., the pressure level in the middle of the
data is about 20 dB greater than at the start. A more rigorous approach might be to analyze station-
ary segments of the data. Nevertheless, one can still proceed and recover a variance spectrum S(f)

and this (Fig. 8, left) is clearly informative in showing that the lion’s share of the spectral energy is
within frequency range 100-1000 Hz.

Figure 8 (right) reveals considerably more information about the process, and this is achieved
via a short-time Fourier transform (STFT). The matlab signal processing toolbox provides several
ways to do this, e.g using STFT, or Spectrogram. Shown here, however, a simple way to do this
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with just the FFT in case you do not have access to these toolboxes– a sort of ”poor mans” STFT.
First data vector data_Pa is a column vector, so its dimension is 1600000 by 1. Next reshape

this into 100 column vectors of N = 16000 points each (or 0.5 sec), and reshaped into a matrix as
follows: data_ Pa_mat=reshape(data_Pa,length(data_Pa)/100,100); (Be sure to do
a little arithmetic check first to insure that reshaping the time series into K segments yields a matrix
with the same total number of points.)

Now take the FFT of this matrix. Matlab FFT works naturally on these column vectors, and
the resulting operation yields 100 FFT column vectors X = FFT(data_Pa_mat);. Take the mag-
nitude squared of the complex FFT coefficients, and toss out the redundent second-half of all 100
FFT column vectors: X = X.*conj(X) , followed by X = X(1:8000,:);. The revised matrix
is now 800 by 100, representing the 100 time increments of 0.5 sec. Next for completeness put
X = X*2*dt/N;; to provide the proper variance normalization as discussed in Lecture 15. Equate
X to the estimate of the STFT S(f ; ti) where it is understood that ti is a time index separated by 0.5
sec. Remember to make a 800-point frequency vector, call this Freq, and a good way to display
this is as follows:

pcolor(time/2,Freq,10*log10(S))

shading(’interp’)

caxis([-50 -10])

ylim([0 2000])

colormap(’hot’)

a = colorbar;

a.Label.String = ’10log_{10} S(f) ’;

ylabel(’Frequency (Hz)’)

xlabel(’Time (sec)’)

where time is just an index 1:1:100. Notice I’ve plotted 10 log10 of S(f ; ti). This is very often
necessary to fully grasp the dynamic range of the spectrum.

Using this or any other approach to STFT you need to experiment as to how short an FFT to
use, depending on application. Making it too short then the frequency resolution is poor, making
it too long and the time resolution is poor and you can’t track changes in frequency. The pattern of
shown in the STFT can be understood in the context of a Lloyd mirror interference pattern between
the jet plane sound source, and a positive image source below the air-water interface at depth
corresponding to the height of the jet.

Another interesting example of time-frequency analysis is that of bird chirp (Fig. 9, left) from a
singing robin that I recorded. This time series is very short, about 1.5 sec, and the performance of
my simple approach as outlined for the jet case doesn’t work as well. However, with matlab signal
processing toolbox, I can use spectrogram and have the results done in one line for me. Below
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Figure 8: Left: Proper normalized variance spectra S(f) corresponding to the data in shown in Fig. 2, based
on three values of ν Right: A STFT of the data from Fig 2 based on 100 segments of 0.5 sec duration.

I use spectrogram on the 60000 point time series ”birdcall” with these arguments: (i) windowed
segments of length 512 are made using the hanning window, (ii) overlap each window by 50% (256
points), (iii) a 512 FFT used, and (iv) identified sample frequency of 30000 Hz. Use imagesc with
of 20 log10 |S|, and set the scale between -25 and 30 dB–one usually experiments with this. Note:
spectrogram produces a complex amplitude spectrum, so need to take absolute value before the
taking the 20 log 10 of the result. The result (Fig. 9, right) shows the interesting fine detail of the
frequency modulation (and harmonics) in the bird chirp over the first 0.5 sec, seen in even greater
detail in Fig. 10.
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[S,F,T] = spectrogram(birdcall,hanning(512),256,512,30000) ;

sc=[-25 30] %best for colormap jet

imagesc(T,F,20*log10(abs(S)),sc), axis xy, colormap (jet)

Figure 9: Left: Time series of the recorded chirp from robin sample frequency 30000 Hz, recorded at approx-
imate range of 8 m. Right: STFT of the data using the matlab function spectrogram (see text).

Figure 10: Expanded scale of the STFT showing frequency modulation over the 0.5 sec
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